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Abstract
The ecological structure of Posidonia oceanica (L.) Delile meadows was evaluated on the northern coast of 
Lazio, Italy (central Tyrrhenian, Mediterranean sea). This is an infra-littoral zone with a wide range of an-
thropogenic activities and high geo-morphological variability, which reflects heterogeneity in shoot densi-
ty, leaf morphology and biomass in fragmented patches. Genetic variability in populations corresponds to 
the formation of 3 sub-clusters, in the diverse impacted zones (north, centre and south), being correlated 
to the geographical distance between sites. AMOVA estimated a high genetic variation showing 43.05% 
individual differences within populations with a marked differentiation among the populations (56.9%) 
indicated by Fst value (0.57). These results revealed the role of the genetic structure of seagrasses for de-
termining selectivity of fragmented habitat, in response to natural drivers. They showed that site-specific 
self-recruitment is related to biodiversity capacity and to the geo-morphological characteristic of the coast.
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Introduction

Coastal areas are characterized by environmental disturbances due to both natural 
process and anthropogenic activities, with consequent impacts on marine ecosystems 
(Benoit and Comeau 2005). Posidonia oceanica (L.) Delile meadows are considered as 
indicators of these impacts (Pergent et al. 1995; Pergent-Martini et al. 2005; Martinez-
Grego et al. 2008;  Lopez y Royo et al. 2011; Bennett et al. 2011; Personnic et al. 
2014), which may influence their natural structural variability, causing a general de-
cline of biomass, density and coverage (Duarte 2002; Orth et al. 2006; Boudouresque 
et al. 2009; Marbà et al. 2014). In the Mediterranean Sea, P. oceanica forms wide-
spread ecosystems with high levels of biodiversity and productivity (Boudouresque et 
al. 1984; 2006; 2012) and, like other seagrasses, it is important from the ecological, 
geological and economic point of view (Costanza et al. 1997; Spalding et al. 2003; 
Vassallo et al. 2013). Moreover, this plant colonizes different types of substrates (e.g. 
sand, rocky, etc.) and generates meadows that occur in a wide range of morphotypes, 
ranging from continuous beds on the seafloor to fragmented patches of different shape 
and size (Molinier and Picard 1952; Den Hartog 1970; Semroud 1993; Boudouresque 
et al. 2012; Bonhomme et al. 2015). The monitoring of structural and functional 
descriptors of P. oceanica meadow health status (Buia et al. 2004) provides important 
information about the vitality and dynamic of meadows (Pergent-Martini et al. 2005), 
as well as the human influence on the environment (Montefalcone 2009). Recently, a 
new suite of descriptors has been proposed to assess the ecological status of P. oceanica 
meadows (Rotini et al. 2013), taking into account the physiological features of the 
plants by means of biochemical (Arnold et al. 2012) and genetic markers (Micheli et 
al. 2005, 2015; Procaccini et al. 2007; Macreadie et al. 2014) as standard indicators.

The objective of this work was to assess the ecological structure and genetic patterns 
of P. oceanica meadows along the northern coast of Lazio to contribute to the conser-
vation of seagrass by future management activity. For this aim, we used functional 
descriptors (phenotypic variables, including biomass and density) and RAPD (Ran-
dom Amplified Polymorphic DNA) molecular markers. The PCR-based RAPD marker 
technique was recently used in seagrasses for estimating the influence of environmen-
tal disturbances on phenotypic variables and genetic diversity of populations (Kim et 
al. 2019), and for distinguishing genetic variation of populations at individual level 
(Dilipan et al. 2017). At multiple spatial scales, RAPD analyses was conducted to assess 
the genetic variability of seagrass, evidencing genetic differences closely correlated with 
coastal currents (Jones et al. 2008). In previous studies, RAPD allowed us to examine 
the genetic structure in meadows located in the Ligurian Gulf (North Tyrrhenian coast) 
that showed a decrease in genetic diversity along an anthropogenic disturbance gradient 
at small scale (Micheli et al. 2005), revealing the role of currents (Micheli et al. 2010b; 
Rotini et al. 2013). Furthermore, we were also able to evaluate changes in genetic struc-
ture of the meadows and their resilience over a decade (Micheli et al. 2012).

Here we used RAPD to detect the genetic structure of P. oceanica meadows in the 
fragmented habitat of the northern coast of Lazio, in order to compare it to that of 
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other Tyrrhenian populations previously studied. Such information was detected in an 
area where natural drivers occur at exceptional conditions and where no similar works 
have been carried out before.

Materials and methods

Study area

The study area between Marina di Tarquinia and Santa Severa (Lazio, Italy, Mediterranean 
Sea; Fig. 1) is located within two physiographic units, one extending from Monte Argen-
tario to Capo Linaro, the other from Capo Linaro to Capo d’ Anzio. Here the appearance 
of the coast is intimately related to the morphology of the seabed as the isobaths show a 
very uneven underwater sea-floor. In fact, according to Anselmi et al. (1978), different 
coastal geo-morphological types (coastal morpho-type) are present in the study area.

The northern part hosts the Mignone river floodplain, which is characterized by 
small sandy beaches and a rocky coastal terrace. From Civitavecchia to Santa Marinel-
la, the coastline is dominated by the “Tolfa Mountains”, which form a promontory 
characterizing the coastal morpho-type (terraces coasts). This promontory separates 
the southern physiographic unit from the northern one, and is crossed by small streams 
(e.g. Marangone stream) with local continental contributions. The southern part pre-
sents a small portion of coastal terraces and beaches with a prevalently sandy coast.

This coastal area is characterized by the presence of the littoral currents having a 
prevailing direction from south to north following a coastal local dynamic connected 
to high geo-morphological variability of the sea bottom, which can generate barriers 
to gene flow. In fact, in the study area the prevailing wind events come from to the 
southeast (data provided from the weather station of C-CEMS), inducing a sea cur-
rent direction to north (Bonamano et al. 2015; 2016). However, P. oceanica flowers 
appeared in the meadows, and seeds were found in the central zone, near the Maran-
gone stream, during November 2013, as was observed in other sites of the area studied 
(Gnisci 2014; Cognetti de Martiis 2016).

The area is also characterized by a very large port (Civitavecchia harbour), two im-
portant power plants located in the northern part of Civitavecchia, and a dense urban 
environment constituted by the municipalities of Civitavecchia and Santa Marinella, 
which altogether form a single urban aggregate (Fig. 1).

Field and sampling work

Field work activities were carried out during the late spring 2013, along 40 km of 
coastline. By SCUBA diving, shoots were collected into 18 sampling areas (6 shoots 
per sites, 3 sites per each station) from May 3rd to June 19th 2013 (Fig. 1, Table 1). For 
field work, we considered sufficient this temporal range as meteorological conditions 
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Figure 1. Map of the study area in northern coast of Lazio (Italy, central Tyrrhenian, Mediterranean) 
with the sampling sites of Posidonia oceanica.

Table 1. Sampling sites, geographical coordinates, depth and three types of substrate of Posidonia oce-
anica. I = Rock, II = Rock+Sand, III = Sand+Matte.

Stations Geographical coordinates Depth (m) Substrate Type
st1 42°13'04.2"N, 11°41'25.2"E 10.0 Rock, Sand II
St2 42°12'19.8"N, 11°42'16.2"E 9.5 Sand, Matte III
St3 42°11'04.2"N, 11°42'25.8"E 13.4 Rock, Sand II
St4 42°08'49.2"N, 11°43'52.8"E 10.3 Rock I
St5 42°08'04.8"N, 11°44'25.8"E 5.5 Rock, Sand II
St6 42°05'05.0"N, 11°47'37.2"E 4.9 Rock I
St7 42°04'35.1"N, 11°47'57.2"E 7.5 Sand, Matte III
St8 42°04'15.1"N, 11°48'06.4"E 12.0 Rock I
St9 42°03'27.9"N, 11°48'35.9"E 10.0 Rock I
St10 42°02'59.2"N, 11°48'57.8"E 10.3 Rock, Sand II
St11 42°02'23.7"N, 11°48'59.8"E 11.0 Rock I
St12 42°01'58.8"N, 11°48'55.8"E 8.9 Rock I
St13 42°01'16.8"N, 11°50'40.8"E 10.9 Rock I
St14 42°01'43.2"N, 11°51'16.2"E 10.0 Rock, Sand II
St15 42°01'58.8"N, 11°52'36.0"E 13.0 Sand, Matte III
St16 42°01'52.8"N, 11°54'52.8"E 13.2 Sand, Matte III
St17 42°00'58.2"N, 11°56'40.8"E 9.4 Sand, Matte III
St18 42°00'24.2"N, 11°55'00.7"E 13.4 Rock, Sand II
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were constant in the study area, and because P. oceanica meadows undergo changes in 
a larger time scales. In each station, three sites were selected to estimate density and 
coverage of the meadow. By hierarchical sampling design, shoot density was calculated 
as shoot number/m² counting the number of shoots in nine random squares (40 × 40 
cm) (Buia et al. 2004; Panayotidis et al. 1981).

On the seafloor, the percentage in coverage of P. oceanica was estimated counting 
the number of sub-squares occupied by the plants in three gridded squares of 1 × 1 m 
(Boudouresque et al. 2007).

At the same time, eighteen shoots were randomly collected in each station and 
stored in sea-water at 4 °C, for laboratory analyses.

Morphological measures and biomass

In the laboratory, leaves of the shoots were washed in distilled water and biometric 
variables, such as number, length and width of juvenile, intermediate and adult leaves 
per shoot were measured in each station, according to Giraud’s classification (Giraud 
1977). Leaf Area Index (LAI) average was calculated according to Buia et al. (2004). 
Furthermore, the leaves were cleaned (by a razor blade to remove epiphytes) and dried 
at 80 °C for 72 hours, to obtain the dried weight, i.e. the dry biomass (g dm/shoot).

RAPD genetic analysis

Genetic analyses of P. oceanica populations were performed on the same shoots col-
lected in each of the 18 sampled stations. According to Micheli et al. (2005), the 
young leaves were washed in distilled water, frozen in liquid nitrogen at -180 °C and 
stored at -80 °C before the extraction of genomic DNA, as reported in Dellaporta et al. 
(1983). Subsequently, DNA was amplified by TAQ Polymerase (Applied Biosystems), 
using PCR (Polymerase Chain Reaction) conditions similar to those described by Echt 
et al. (1992) with some modification involving reaction buffer (100 mM Tris-HCL, 
500 mM KCL and 25 mM MgCl2). Amplification reactions were carried out in a ther-
mal cycler (Perkin-Elmer) with the following temperature program: 5 min denatura-
tion cycle at 94 °C and, subsequently, 40 cycles of 30 s at 37 °C annealing temperature 
and 6 min at 72 °C synthesis temperature. For each DNA (1 μg/μL) amplification, the 
AmpliTaq DNA Polymerase (0.4 μg/μL) and 10 different easily repeated oligonucleo-
tides (10 mM) were used for their capacity to discriminate bands and scoring them as 
present/absent. Amplification products were separated by agarose gel electrophoresis 
(1.4%), stained with ethidium bromide, visualized on UV light and photographed. 
The different DNA fingerprints obtained were analyzed for the presence (1) or absence 
(0) of the bands, in order to determine the percentage of polymorphism calculated as 
the number of polymorphic bands out of the total number of bands.
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Statistical analyses

Morphological and structural variables of P. oceanica meadows were statistically ana-
lyzed by means of PAST (Hammer et al. 2001) and R Development Core Team (2008) 
software. Three way Analysis of Variance (ANOVA) was employed to test the effect of 
three main factors, i.e. location, depth and substrate typology, on meadow structure 
parameters and leaf morphology. Furthermore the non-parametric Kruskal-Wallis test 
was performed to check the level of significance (p < 0.05, p < 0.01 or p < 0.001) of 
the main factors (location, depth and substrate typology) effect on number of juvenile, 
intermediate and adult leaves in each shoot, which data no present a normal distri-
bution. The Mann-Whitney post-hoc pairwise comparison was performed to valuate 
significant differences (p < 0.05, p < 0.01, p < 0.001) among different sampling area 
(North, Centre and South). Intra- and inter-population genetic distance has been de-
termined using the NTSYS 2.0 program (Rohlf 1993) generating a similarity matrix 
(Nei and Li 1979). Cluster analysis was performed on the similarity matrix with the 
SAHN program using UPGMA (Un-weighted Pair Group Method with Arithmetic 
Mean) generating the dendrogram. A cophenetic correlation has been used to measure 
goodness of fit for the cluster analysis (r) by comparing it with the original pairwise dis-
tance matrix (Euclidean squared distance) using a Mantel test (MXCOMP program).

Then, Principal Coordinate Analysis (PCoA, NT-SYS software; Rohlf 1993) was 
performed to elucidate the distribution of the samples by deriving genetic distances.

Subsequently AMOVA (Analysis of Molecular Variance) was performed with AR-
LEQUIN 3.5 program (Excoffier and Lischer 2010; http://cmpg.unibe.ch/software/arle-
quin3) to elucidate the genetic variation and relationships between individuals within and 
among populations. Using AMOVA, we estimated the number of genetically homogene-
ous groups of individuals based on their genotypes, at multiple loci, using the Bayesian ap-
proach. The method assumes a model in which there are K populations, each characterized 
by a set of allele frequencies at each locus. For each individual, the software computes the 
proportion of the genome that can be assigned to the inferred K populations with a high 
probability. Because RAPD markers are dominant, we assumed that each band represented 
the phenotype at a single biallelic locus (Williams et al. 1990). The heterogeneity of band 
frequencies across all populations was tested using the Fixation index (Fst) in ARLEQUIN 
software. Fst is a measure of population differentiation (Meirmans 2006), and represents 
the most frequently used method to analyze population structure concerning gene flow.

Results

Leaf morphology, biomass, density and coverage of the meadows

Results of leaf morphology (number of leaves/shoot, width and length), Leaf Area 
Index (LAI), biomass, shoot density and coverage of the plants collected in the 18 
sampling stations, are reported in Table 2.

http://cmpg.unibe.ch/software/arlequin3
http://cmpg.unibe.ch/software/arlequin3
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The presence of highly fragmented meadows (evidenced in Suppl. material 1: Fig. 
S1), in a large range of depths (from 4.9 m to 13.4 m. Table 1), was confirmed by the 
high variability of coverage found among stations, ranging from 6 to 98 % (St 16 and 
St 14 respectively), and by the coefficient of variation (72.4%) (Table 2).

Three-way ANOVA (Suppl. material 3: Table S1), was tested to detect significant 
factors in a multifactor model, in which there is one dependent variable (shoot density 
of P. oceanica) and three independent variables (depth, location and substrate typology).

The three way ANOVA showed differences in sea-bottom coverage (P < 0.05) due 
to different substrate types (Table 3). In all areas, the mean shoot density estimated was 
276 ± 133 SD (number of shoot/m² ± Standard Deviation), ranging from 141 ± 62 
SD to 653 ± 145 SD (St 8 and St 5, respectively). Biomass mean value 0.70 ± 0.213 
SD (g dm/shoot) showed the highest values in the stations at intermediate depths, 
ranging from 1.03 ± 0.49 SD to 0.40 ± 0.11 SD.

All the shoots showed similar values in leaf number (5.92 ± 1.03 SD mean value) 
and width (0.9 ± 0.05 SD mean value).

Due to the differences in depth and water transparency of the 18 sites, we found a 
highly variable leaf length with values ranging from 24.24 ± 14.22 SD to 49.44 ± 17.11 
SD (mean values of 35.05 ± 7.3 SD), showing statistically significant differences in the 
three populations (ANOVA, P < 0.05) (Table 2, Table 3, Suppl. material 3: Table S1).

In the Table 3, the multi-factors three-way ANOVA performed on shoot density 
of P. oceanica, showed no significant difference among the sites located in the north, 
central and south areas (ANOVA, p = 0.1868); on the contrary significant differences 
were found among stations located both on different depths (ANOVA, p < 0.001) and 
on different substrates (ANOVA, p < 0.05).

The non-parametric Kruskal-Wallis test was performed to verify the presence of 
significant differences in number of juvenile and intermediate leaves among the three 
sampling location (North, Centre and South). The test highlighted significant dif-
ferences in the number of juvenile (p < 0.001) and intermediate (p < 0.001) leaves. 
Following Kruskal-Wallis results, the Mann-Whitney post-hoc pairwise comparison 
test was performed; it highlighted the lowest values of the juvenile leaf number, and 
the highest values of the intermediate leaf number in the central area compared to the 
other two locations. The adult leaves number showed no significant differences among 
the different locations (Kruskal-Wallis, p = 0.0525) (Suppl. material 2: Fig. S2).

Genetic variability of the population

By UPGMA dendrogram (Fig. 2), based on SAHN clustering of the data, the simi-
larity coefficient (Nei’s index) among the P. oceanica samples was 0.61 ± 0.01 based 
on 140 RAPD total bands (mono- and polymorphic) with fragments ranging in size 
from 0.3 kb to 3.8 kb. The percentage of polymorphism obtained in the population 
was 90.14% (Table 4).



Posidonia oceanica (L) Delile 9

Table 3. Three way Analysis of Variance (ANOVA) applied to three main factors (i.e. location, depth, and 
substrate type) on meadow structure parameters and leaf morphology.

Sum Sq. d.f. Mean Sq. F Prob > F
Depth 226471 2 113235.5 12.56 p < 0.001
Location 31885.8 2 15942.9 1.77 0.1868
Substrates 76990.4 2 38495.2 4.27 p < 0.05
Error 288410 32 9012.8
Total 896383.4 50

Table 4. RAPD marker sequences, amplification range and total polymorphism detected in the studied 
Posidonia oceanica meadows.

Primer Sequence Amplification range Fragment amplification 
polymorphic monomorphic

Tot Polymorphism (%)

BY11 5’-ATCCACTGCA-3’ 0.3–2.4 Kb 18 0 18 100.00
BY12 5’-GGTCGCAGGC-3’ 0.3–3.8 Kb 12 2 14 85.71
BY13 5’-CCTTGACGCA-3’ 0.5–3.8 Kb 13 2 15 86.67
BY15 5’-CTCACCGTCC-3’ 0.73–2.8 Kb 11 1 12 91.67
DN4 5’-GTCGTGCTAT-3’ 0.–2.4 Kb 9 2 11 81.82
DN5 5’-CCGACGGCAA-3’ 0.3–1.75 Kb 22 0 22 100.00
DN6 5’-TGGACCGGTG-3’ 0.5–3.0 Kb 8 1  9 88.89
UB24 5’-GGGTGAACCG-3’ 0.75–2.25 Kb 12 0 12 100.00
UB26 5’-CGCCCCCAGT-3’ 0.73–2.75 Kb 8 4 12 66.67
UB28 5’-GCTGGGCCGA-3’ 0.5–1.85 Kb 15 0 15 100.00

Average pergentage of polymorphism (%) 90.14

Mantel test, which compares Nei’s distance and cophenetic matrices, returned sta-
tistically significant values, with a matrix correlation of r = 0.95 (normalized Mantel Sta-
tistic Z); t = 25 (Mantel T-test) and p = 1.00000 (Probability random Z < observed Z).

PCoA analysis showed that the individuals sampled in the 3 different impacted 
zones fell into 3 distinct groups (north, centre and south populations) (Fig. 3). The 
first two axes accounted for 57.8% of variation, with axis 1 and 2 explaining 39.7 
% and 18.1% of the variation, respectively. AMOVA (Suppl. material 4: Table S2) 
showed 43.05% individual differences within populations with a marked differentia-
tion among the populations (56.9%) indicated by Fst value (0.57).

Discussion

In the meadows, the genetic structure of P. oceanica populations was clustered into 
three main groups located into three different zones (Fig. 2). The first population has 
been identified in the northern area, corresponding to sampling sites between Civi-
tavecchia harbour and Marina di Tarquinia, an area mainly dominate by the presence 
of the Mignone river floodplain. As observed in UPGMA analysis, meadows located in 
this northern area are divided in two sub-populations, which are crossed by Mignone 
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river. The second population (in the centre) corresponds to the sampling stations be-
tween Civitavecchia harbour and Capo Linaro with the presence of low cliffs and a 
very heterogeneous sea floor, with a prevalently rocky bottom. The third population, 
located in the southern part of the study area, from Capo Linaro to Santa Severa, is 
characterized by a prevalent sandy sea floor.

By AMOVA, a high level of genetic diversity was recognized within (43.05%) and 
among the populations (56.95%) and was confirmed by PCoA (Fig. 3) when the vari-
ation was applied to genetic distance among individuals (57.8%).

In this highly heterogeneous coastal area, we found 90.14% of total polymor-
phism ranging from 66.67 % to 100 % in the individuals analyzed (Table 4). This 
high percentage of polymorphism demonstrates the high variability displayed by each 
individual, which is also evidenced by the UPGMA cluster analysis (Figure 2) showing 
a low similarity value (0.52) within each population.

In the UPGMA cluster analysis, the 0.52 similarity value is lower than the one found 
for Monterosso meadow (0.66), where natural and anthropogenic pressure were low, and 
lower than the one found at the Mediterranean basin scale (0.81) (Micheli et al. 2005).

Moreover, in the same sub-cluster (Figure 2) are grouped the individuals of popu-
lation with the same morphological features of the leaves linked to their genetic capac-
ity to fit the same environment.

In the Table 2, the structural and functional descriptors have confirmed a high 
variability in all sampling areas, due to the different depth, which may particularly 
influence the morphology of leaves. According to other authors (Di Maida et al. 
2013; Balestri et al. 2004; Pergent et al. 1995), the meadows that we found are frag-
mented, discontinuous and are characterized by a wide range of shoot density and 
substrate coverage which reflect a spatial heterogeneity of P. oceanica meadows, prob-
ably due to the complex nature of the seafloor (Tables 1, 2). Our results highlight 
the influence of natural drivers, as the geo-morphological features of the fragmented 
habitat, in the connectivity of seagrass populations. The heterogeneity patterns of 
the meadows that we found along the northern coast of Lazio, describe the ability 
of plants to respond to the environment. This depends on the availability of genetic 
variation improving plant growth, development and resilience (Hughes and Stacho-
wicz 2004; Reusch et al. 2005). At this regard, Jahnke et al. (2015) suggested not 
only a greater resistance and resilience of individuals of higher genetic and genotypic 
diversity under disturbance, but also that the high diversity in high impacted sites 
reflects the mismatches with respect to pre-environmental impact conditions. espe-
cially because flowering and sexual recruitment are seldom observed. In fact, by the 
genetic diversity metrics study, they observed that the absence of low and medium 
levels of genetic variation in impacted locations were probably due to local extinc-
tions of individuals that already exceeded their resistance capacity. Therefore, they 
suggested to use this valuable tool for restoration and mitigation projects, because 
the exceptional longevity of individuals (i.e. P. oceanica population) could create 
a temporal mismatch that may falsely suggest good meadow health status, while 
gradual deterioration of allelic diversity might go unnoticed (Jahnke et al. 2015).
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Figure 2. UPGMA analysis of Posidonia oceanica meadows.

Figure 3. Principal Coordinate analyses (PCoA) based on 140 RAPD bands of XX individuals of 
Posidonia oceanica.

According to the above studies, our genetic data have highlighted the influence of 
different habitat conditions on plants found in the three different areas, which parallel 
the high variability of all structural and functional parameters (Table 2). The incidence 
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of multiple environmental cues led plants to a more plastic response, differing among 
individuals, and the genetic distance between populations correlates to the distance 
between sites showing different environmental conditions (substrate, marine dynamic, 
nutrients, etc.) and subject to both natural drivers and different stressors.

Conclusion

The first investigation on the ecological/genetic structure of P. oceanica growing along 
the coasts of the northern Lazio has called the attention on the higher genetic variability 
of these meadows than others previously studied (Micheli et al. 2005; 2010b; 2012; 
Rotini et al. 2011; 2013). The observed genetic diversity and differentiation (Fst = 0.57) 
found among the P. oceanica populations suggest an adaptation capacity of the species 
to share different environments (rocky and sandy). This reflects in the formation of dif-
ferent local meadows with a spatial heterogeneity distribution along the studied area. 
UPGMA cluster of genetic distance revealed a high variability of seagrass population in 
the relatively close meadows as the result of a low level of gene flow among them. By 
using a dispersal simulation analysis, Serra et al. (2015) suggested that such pattern of 
genetic structure probably reflects historical events of recolonization from relict glacial 
areas and of past vicariance, which seems to persist because of the low connectivity 
among populations via marine currents. Whilst Jahnke et al. (2015) observed that the 
absence of low and medium levels of genetic variation in impacted locations are proba-
bly due to local extinctions of individuals that already exceeded their resistance capacity.

In the Mediterranean, P. oceanica plays a crucial role for the ecosystem productivity 
through favoring biodiversity, revealing a whole range of intra-specific levels of diver-
sity from complete clonality to high variability (Ribeiro et al. 2016). In this littoral 
zone of the northern coast of Lazio, natural drivers like the prevailing current direction 
towards north (Bonamano et al. 2015; 2016) could affect seed transport favoring the 
colonization of new habitats whilst the incidence of multiple environmental impacts 
and the intra-meadow genotypic heterogeneity drive the plant to a more plastic re-
sponse among individuals (Micheli et al. 2015; 2012).

Posidonia oceanica is considered a vulnerable species, largely susceptible to pertur-
bations, and is thus included within Habitats Directive (92/43/EEC), which supports 
the Natura 2000 network of European protected areas. From a conservation perspec-
tive, and considering future increase in both anthropogenic and climatic pressures 
(Mannino 2018), the assessment and management of environmental quality require 
an adequate knowledge of the ecosystems that can be obtained only by multidiscipli-
nary investigations (Cozza et al. 2019; Domina et al. 2018). Therefore further stud-
ies focused on the intra-variability of the meadows, by analyzing the allelic richness 
(Jahnke et al. 2015), are needed. These studies should include the changes of private 
(neutral) allelic in order to control the population demography vs genetic relationship 
stability necessary to reinforce their resilience as we have observed in other protected 
areas in the Mediterranean (Micheli et al. 2015; 2012). Finally, since seagrasses are 
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globally declining, and their loss is often due to synergies among stressors (Ceccherelli 
et al. 2018), the ecological implication of the results obtained here, such as the genetic 
features and the environmental conditions, could be further aspects to be considered 
in the monitoring surveys.
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Figure S1. Heterogeneous spatial distribution of seagrass population along the 
northern coast of Lazio (Italy), Central Tyrrhenian, Mediterranean
Authors: Valentina Gnisci, Selvaggia Cognetti de Martiis, Alessandro Belmonte, Carla 
Micheli, Viviana Piermattei, Simone Bonamano, Marco Marcelli
Data type: occurrence
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/italianbotanist.9.46426.suppl1
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Figure S2. The non-parametric Kruskal-Wallis test
Authors: Valentina Gnisci, Selvaggia Cognetti de Martiis, Alessandro Belmonte, Carla 
Micheli, Viviana Piermattei, Simone Bonamano, Marco Marcelli
Data type: statistical data
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/italianbotanist.9.46426.suppl2
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Table S1. ANOVA results
Authors: Valentina Gnisci, Selvaggia Cognetti de Martiis, Alessandro Belmonte, Carla 
Micheli, Viviana Piermattei, Simone Bonamano, Marco Marcelli
Data type: statistical data
Explanation note: Multifactor three-way ANOVA results to test the presence of sig-

nificant differences in shoot density, leaf number, leaf length, leaf surface and LAI 
among the samples collected at different depth, location and substrate type.
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original source and author(s) are credited.

Link: https://doi.org/10.3897/italianbotanist.9.46426.suppl3

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/italianbotanist.9.46426.suppl1
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/italianbotanist.9.46426.suppl2
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/italianbotanist.9.46426.suppl3


Posidonia oceanica (L) Delile 19

Supplementary material 4

Table S2. AMOVA
Authors: Valentina Gnisci, Selvaggia Cognetti de Martiis, Alessandro Belmonte, Carla 
Micheli, Viviana Piermattei, Simone Bonamano, Marco Marcelli
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Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/italianbotanist.9.46426.suppl4

http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/10.3897/italianbotanist.9.46426.suppl4

	Assessment of the ecological structure of Posidonia oceanica (L.) Delile on the northern coast of Lazio, Italy (central Tyrrhenian, Mediterranean)
	Abstract
	Introduction
	Materials and methods
	Study area
	Field and sampling work
	Morphological measures and biomass
	RAPD genetic analysis
	Statistical analyses

	Results
	Leaf morphology, biomass, density and coverage of the meadows
	Genetic variability of the population

	Discussion
	Conclusion
	Acknowledgments
	References
	Supplementary material 1
	Figure S1. Heterogeneous spatial distribution of seagrass population along the northern coast of Lazio (Italy), Central Tyrrhenian, Mediterranean

	Supplementary material 2
	Figure S2. The non-parametric Kruskal-Wallis test

	Supplementary material 3
	Table S1. ANOVA results

	Supplementary material 4
	Table S2. AMOVA


